Selected Publications

*corresponding author(s)

** Co-author(s)

Daniel Lu, Laura R Parisi, Omer Gokcumen, G Ekin Atilla-Gokcumen.(2023). SREBP activation contributes to fatty acid accumulations in necroptosis. RSC Chemical Biology. https://doi.org/10.1039/D2CB00172A

Ricardo X Ramirez, Oluwatoyin Campbell, Apoorva J Pradhan, G Ekin Atilla-Gokcumen, Viviana Monje-Galvan. (2023). Modeling the molecular fingerprint of protein-lipid interactions of MLKL on complex bilayers. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.1088058

Apoorva J. Pradhan &G Ekin Atilla-Gokcumen. (2023). Omics approaches to better understand the molecular mechanism of necroptosis and their translational implications. Molecular Omics. https://doi.org/10.1039/D2MO00318J

Purab Pal, G Ekin Atilla-Gokcumen, Jonna Frasor. (2022). Emerging Roles of Ceramides in Breast Cancer Biology and Therapy. International Journal of Molecular Sciences, 23 (19), 11178. https://doi.org/10.3390/ijms231911178

Cátia Vilas-Boas, Logan Running, Daniela Pereira, Honorina Cidade, Marta Correia-da-Silva, Gunes Ekin Atilla-Gokcumen, Diana S Aga. (2022). Impact of Tralopyril and Triazolyl Glycosylated Chalone in Human Retinal Cells’ Lipidome. Molecules, 27 (16), 5247. https://doi.org/10.3390/molecules27165247

Running, L., Atilla-Gokcumen, G.E., and Aga, D.S. (2022). Development of a Liquid Chromatography–Mass Spectrometry-Based In Vitro Assay to Assess Changes in Steroid Hormones Due to Exposure to Per- and Polyfluoroalkyl Substances. Chemical Research in Toxicology, 7, 1277-1288. https://doi.org/10.1021/acs.chemrestox.2c00116

Pal, P., Millner, A., Semina, S.E., Huggins, R.J., Running, L., Aga, D.S., Tonetti, D.A., Schiff, R., Greene, G.L., Atilla-Gokcumen, G.E., Frasor, J. (2022). Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers14 (10), 2380. https://doi.org/10.3390/cancers14102380

Camdzic, M., Aga, D. S., & Atilla-Gokcumen, G. E. *. (2022). Cellular Interactions and Fatty Acid Transporter CD36-Mediated Uptake of Per-and Polyfluorinated Alkyl Substances (PFAS). Chemical Research in Toxicology. https://doi.org/10.1021/acs.chemrestox.2c00078

Millner, A., Running, L., Colon-Rosa, N., Aga, D. S., Frasor, J., & Atilla-Gokcumen, G. E.*(2022). Ceramide-1-Phosphate Is Involved in Therapy-Induced Senescence. ACS Chemical Biology, 17 (4), 822–828. https://doi.org/10.1021/ACSCHEMBIO.2C00216

Millner, A. & Atilla-Gokcumen, G. E.* (2021). Solving the enigma: Mass spectrometry and small molecule probes to study sphingolipid function. Current Opinion in Chemical Biology, 65, 49–56. https://doi.org/10.1016/J.CBPA.2021.05.001

Pradhan, A. J.**, Lu, D.**, Parisi, L. R., Shen, S., Berhane, I. A., Galster, S. L., Bynum, K., Monje-Galvan, V., Gokcumen, O., Chemler, S. R., Qu, J., Kay, J. G., & Atilla-Gokcumen, G. E.* (2021). Protein acylation by saturated very long chain fatty acids and endocytosis are involved in necroptosis. Cell Chemical Biology, 28(9), 1298-1309.e7. https://doi.org/10.1016/J.CHEMBIOL.2021.03.012

Saitou, M., Resendez, S., Pradhan, A. J., Wu, F., Lie, N. C., Hall, N. J., Zhu, Q., Reinholdt, L., Satta, Y., Speidel, L., Nakagome, S., Hanchard, N. A., Churchill, G., Lee, C., Atilla-Gokcumen, G. E., Mu, X., & Gokcumen, O.* (2021). Sex-specific phenotypic effects and evolutionary history of an ancient polymorphic deletion of the human growth hormone receptor. Science Advances, 7(39). https://doi.org/10.1126/sciadv.abi4476

Kilian, H. I., Pradhan, A. J., Jahagirdar, D., Ortega, J., Atilla-Gokcumen, G. E., & Lovell, J. F. *(2021). Light-Triggered Release of Large Biomacromolecules from Porphyrin-Phospholipid Liposomes. Langmuir, 37(36), 10859–10865. https://doi.org/10.1021/acs.langmuir.1c01848

Pliss, A., Kuzmin, A. N., Lita, A., Kumar, R., Celiku, O., Atilla-Gokcumen, G. E., Gokcumen, O., Chandra, D., Larion, M., & Prasad, P. N.*, (2021). A single-organelle optical omics platform for cell science and biomarker discovery. Analytical Chemistry, 93(23), 8281–8290. https://doi.org/10.1021/acs.analchem.1c01131

Morstein, J., Kol, M., Novak, A. J. E., Feng, S., Khayyo, S., Hinnah, K., Li-Purcell, N., Pan, G., Williams, B. M., Riezman, H., Atilla-Gokcumen, G. E., Holthuis, J. C. M., & Trauner, D. *(2021). Short Photoswitchable Ceramides Enable Optical Control of Apoptosis. ACS Chemical Biology, 16(3), 452–456. https://doi.org/10.1021/acschembio.0c00823

Mabrouk, M. T., Huang, W. C., Deng, B., Li-Purcell, N., Seffouh, A., Ortega, J., Ekin Atilla-Gokcumen, G., Long, C. A., Miura, K., & Lovell, J. F. (2020). Lyophilized, antigen-bound liposomes with reduced MPLA and enhanced thermostability. International Journal of Pharmaceutics, 589, 119843. https://doi.org/10.1016/J.IJPHARM.2020.119843

Millner, A. & Ekin Atilla-Gokcumen, G.* (2020). Lipid players of cellular senescence. Metabolites, 10(9), 1–17. https://doi.org/10.3390/metabo10090339

Bayraktar, E. C., La, K., Karpman, K., Unlu, G., Ozerdem, C., Ritter, D. J., Alwaseem, H., Molina, H., Hoffmann, H.-H., Millner, A., Atilla-Gokcumen, G. E., Gamazon, E. R., Rushing, A. R., Knapik, E. W., Basu, S., Birsoy, K. *(2020). Metabolic co-essentiality mapping identifies c12orf49 as a regulator of SREBP processing and cholesterol metabolism. 2(6), 487–498. https://doi.org/10.1038/s42255-020-0206-9

Bozelli, J. C., Lu, D., Atilla-Gokcumen, G. E., & Epand, R. M. *(2020). Promotion of plasmalogen biosynthesis reverse lipid changes in a Barth Syndrome cell model. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids, 1865(6). https://doi.org/10.1016/j.bbalip.2020.158677

Millner, A., Lizardo, D. Y., & Atilla-Gokcumen, G. E.* (2020). Untargeted Lipidomics Highlight the Depletion of Deoxyceramides during Therapy-Induced Senescence. Proteomics, 20(10), 1–7. https://doi.org/10.1002/pmic.202000013

Swayambhu, G., Moscatello, N., Atilla-Gokcumen, G. E. ,& Pfeifer, B. A.* (2020). Flux Balance Analysis for Media Optimization and Genetic Targets to Improve Heterologous Siderophore Production. IScience, 23(4), 101016. https://doi.org/10.1016/J.ISCI.2020.101016

Chavez Soria, N. G., Bisson, M. A., Atilla-Gokcumen, G. E.*, & Aga, D. S.* (2019). High-resolution mass spectrometry-based metabolomics reveal the disruption of jasmonic pathway in Arabidopsis thaliana upon copper oxide nanoparticle exposure. Science of The Total Environment, 693, 133443. https://doi.org/10.1016/J.SCITOTENV.2019.07.249

1.jpg

Parisi, L. R., Sowlati-Hashjin, S., Berhane, I. A., Galster, S. L., Carter, K. A., Lovell, J. F., Chemler, S. R., Karttunen, M., & Atilla-Gokcumen, G. E. *(2019). Membrane Disruption by Very Long Chain Fatty Acids during Necroptosis. ACS Chemical Biology, 14(10), 2286–2294. https://doi.org/10.1021/acschembio.9b00616

cb9b00616_0007.gif

Atilla-Gokcumen, G. E. (2019). Special Issue on Lipidomics. Proteomics, 19(18), 2–3. https://doi.org/10.1002/pmic.201900243

Brovkovych, V., Aldrich, A., Li, N., Atilla-Gokcumen, G. E.*, & Frasor, J.* (2019). Removal of Serum Lipids and Lipid-Derived Metabolites to Investigate Breast Cancer Cell Biology. Proteomics, 19(18), 1–8. https://doi.org/10.1002/pmic.201800370

Matich, E. K., Chavez Soria, N. G., Aga, D. S.*, & Atilla-Gokcumen, G. E.* (2019). Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. Journal of Hazardous Materials, 373, 527–535. https://doi.org/10.1016/J.JHAZMAT.2019.02.084

Li, N., Saitou, M., & Atilla-Gokcumen, G. E.* (2019). The Role of p38 MAPK in Triacylglycerol Accumulation during Apoptosis. Proteomics, 19(13), 1–7. https://doi.org/10.1002/pmic.201900160

Chavez Soria, N. G., Aga, D. S.*, & Atilla-Gokcumen, G. E.* (2019). Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Molecular Omics, 15(1), 30–38. https://doi.org/10.1039/c8mo00162f

Matich, E. K., Ghafari, M., Camgoz, E., Caliskan, E., Pfeifer, B. A., Haznedaroglu, B. Z., & Atilla-Gokcumen, G. E.* (2018). Time-series lipidomic analysis of the oleaginous green microalga species Ettlia oleoabundans under nutrient stress. Biotechnology for Biofuels, 11(1), 1–15. https://doi.org/10.1186/s13068-018-1026-y

Brovkovych, V., Izhar, Y., Danes, J. M., Dubrovskyi, O., Sakallioglu, I. T., Morrow, L. M., Ekin Atilla-Gokcumen, G.*, & Frasor, J.* (2018). Oncogenesis Fatostatin induces pro-and anti-apoptotic lipid accumulation in breast cancer. Oncogenesis, 7, 66. https://doi.org/10.1038/s41389-018-0076-0

Quiñones-Lombraña, A., Li, N., del Solar, V., Atilla-Gokcumen, G. E., & Blanco, J. G.* (2018). CBR1 rs9024 genotype status impacts the bioactivation of loxoprofen in human liver. Biopharmaceutics and Drug Disposition, 39(6), 315–318. https://doi.org/10.1002/bdd.2135

Miranda, D., Li, N., Li, C., Stefanovic, F., Atilla-Gokcumen, G. E., & Lovell, J. F.* (2018). Detection of sunlight exposure with solar-sensitive liposomes that capture and release food dyes. ACS Applied Nano Materials, 1(6), 2739–2747. https://doi.org/10.1021/acsanm.8b00435

Parisi, L. R., Morrow, L. M., Visser, M. B., & Atilla-Gokcumen, G. E.* (2018). Turning the Spotlight on Lipids in Non-Apoptotic Cell Death. ACS Chemical Biology, 13(3), 506–515. https://doi.org/10.1021/acschembio.7b01082

1.gif

Li, N., Sancak, Y., Frasor, J., & Atilla-Gokcumen, G. E.* (2017). A Protective Role for Triacylglycerols during Apoptosis. https://doi.org/10.1021/acs.biochem.7b00975

092717 TOC copy.jpg

Lizardo, D. Y., Parisi, L. R., Li, N., & Atilla-Gokcumen, G. E.*(2017). Noncanonical Roles of Lipids in Different Cellular Fates. https://doi.org/10.1021/acs.biochem.7b00862

TOC copy.jpg

Saitou, M., Lizardo, D. Y., Taskent, R. O., Millner, A., Gokcumen, O., & Atilla-Gokcumen, G. E.* (2018). An evolutionary transcriptomics approach links CD36 to membrane remodeling in replicative senescence. Molecular Omics, 14, 237. https://doi.org/10.1039/c8mo00099a

Parisi, L. R., Li, N., & Atilla-Gokcumen, G. E.* (2017). Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis. Cell Chemical Biology, 24(12), 1445-1454.e8. https://doi.org/10.1016/j.chembiol.2017.08.026

graphical abstract copy.jpg

Luo, D., Geng, J., Li, N., Carter, K. A., Shao, S., Ekin Atilla-Gokcumen, G.*, & Lovell, J. F. (2017). Vessel-Targeted Chemophototherapy with Cationic Porphyrin-Phospholipid Liposomes. https://doi.org/10.1158/1535-7163.MCT-17-0276

Miranda, D., Carter, K., Luo, D., Shao, S., Geng, J., Li, C., Chitgupi, U., Turowski, S. G., Li, N., Atilla-Gokcumen, G., Spernyak, J. A., & Lovell, J. F.* (2017). Multifunctional Liposomes for Image-Guided Intratumoral Chemo-Phototherapy. https://doi.org/10.1002/adhm.201700253

Chavez Soria, N. G., Montes, A., Bisson, M. A., Atilla-Gokcumen, G.E.*, & Aga, D. S. *(2017). Mass spectrometry-based metabolomics to assess uptake of silver nanoparticles by Arabidopsis thaliana. Environ. Sci, 4. https://doi.org/10.1039/c7en00555e

Arabidopsis_Cover.jpg

Lizardo, D. Y., Lin, Y.-L., Gokcumen, O.*, & Atilla-Gokcumen, G.E.* (2017). Regulation of lipids is central to replicative senescence †. 498 | Mol. BioSyst, 13, 498. https://doi.org/10.1039/c6mb00842a

dar.jpg

Matich, E. K., Butryn, D. M., Ghafari, M., del Solar, V., Camgoz, E., Pfeifer, B. A., Aga, D. S., Haznedaroglu, B. Z., & Atilla-Gokcumen, G. E.* (2016). Mass spectrometry-based metabolomics of value-added biochemicals from Ettlia oleoabundans. Algal Research, 19, 146–154. https://doi.org/10.1016/J.ALGAL.2016.08.009

Li, N., Lizardo, D. Y., & Atilla-Gokcumen, G.E.* (2016). Specific Triacylglycerols Accumulate via Increased Lipogenesis During 5-FU-Induced Apoptosis. https://doi.org/10.1021/acschembio.6b00410

li.jpg

Luo, D., Li, N., Carter, K. A., Lin, C., Geng, J., Shao, S., Huang, W.-C., Qin, Y., Atilla-Gokcumen, G. E., & Lovell, J. F.* (2016). Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids. https://doi.org/10.1002/smll.201503966

Mondal, N., Stolfa, G., Antonopoulos, A., Zhu, Y., Wang, S.-S., Buffone, A., Atilla-Gokcumen, G.E., Haslam, S. M., Dell, A., & Neelamegham, S.* (2016). P-(CD62P), E-(CD62E), and L-selectin (CD62L) constitute Glycosphingolipids on Human Myeloid Cells Stabilize E-Selectin-Dependent Rolling in the Multistep Leukocyte Adhesion Cascade. https://doi.org/10.1161/ATVBAHA.115.306748

del Solar, V., Lizardo, D. Y., Li, N., Hurst, J. J., Brais, C. J., & Atilla-Gokcumen, G. E.* (2015). Differential Regulation of Specific Sphingolipids in Colon Cancer Cells during Staurosporine-Induced Apoptosis. Chemistry and Biology, 22(12), 1662–1670. https://doi.org/10.1016/j.chembiol.2015.11.004

toc_final copy.jpg

Singh, R. R., Lester, Y., Linden, K. G., Love, N. G., Atilla-Gokcumen, G.E., & Aga, D. S. (2015). Application of Metabolite Profiling Tools and Time-of-Flight Mass Spectrometry in the Identification of Transformation Products of Iopromide and Iopamidol during Advanced Oxidation. https://doi.org/10.1021/es505469h

Singh TOC

Publications prior to UB:

Atilla-Gokcumen, G. E*, Eggert, U. S. A comparative LC-MS based profiling approach to analyze lipid composition in tissue culture systems. In D. Owen (Ed.) Methods in Membrane Lipids. 2015 New York, Springer;1232:103-13.

Muro E.*, Atilla-Gokcumen G.E.*, Eggert, U. S. Lipids in cell biology – how can we understand them better? Mol Bio Cell 2014 5;25(12):1819-1823 (*Contributed equally)

Muro TOC

Atilla-Gokcumen G. E.*, Muro E.*, Relat-Goberna J., Sasse S., Bedigian A.V., Coughlin, M., Garcia-Manyes, S., Eggert, U. S. Dividing cells regulate their lipid composition and localization. Cell. 2014 156, 428-439. (*Contributed equally).

Atilla TOC

Atilla-Gokcumen, G. E., Bedigian, A. V., Sasse, S., and Eggert, U. S.* Inhibition of glycosphingolipid biosynthesis induces cytokinesis failure. J. Am. Chem. Soc. 2011 133, 10010-10013.

Atilla_2 TOC

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: